MA: Linker

In computer science, a linker or link editor is a computer program that takes one or more object files generated by a compiler and combines them into a single executable program.


For most compilers, each object file is the result of compiling one input source code file. When a program comprises multiple object files, the linker combines these files into a unified executable program, resolving the symbols as it goes along.
Linkers can take objects from a collection called a library. Some linkers do not include the whole library in the output; they only include its symbols that are referenced from other object files or libraries. Libraries exist for diverse purposes, and one or more system libraries are usually linked in by default.
The linker also takes care of arranging the objects in a program's address space. This may involve relocating code that assumes a specific base address to another base. Since a compiler seldom knows where an object will reside, it often assumes a fixed base location (for example, zero). Relocating machine code may involve re-targeting of absolute jumps, loads and stores.
The executable output by the linker may need another relocation pass when it is finally loaded into memory (just before execution). This pass is usually omitted on hardware offering virtual memory: every program is put into its own address space, so there is no conflict even if all programs load at the same base address. This pass may also be omitted if the executable is a position independent executable.
On some Unix variants, such as SINTRAN III, the process performed by a linker (assembling object files into a program) was called loading (as in loading executable code onto a file).[2] Additionally, in some operating systems the same program handles both the jobs of linking and loading a program (dynamic linking).

Dynamic linking

Many operating system environments allow dynamic linking, that is the postponing of the resolving of some undefined symbols until a program is run. That means that the executable code still contains undefined symbols, plus a list of objects or libraries that will provide definitions for these. Loading the program will load these objects/libraries as well, and perform a final linking. Dynamic linking needs no linker.
This approach offers two advantages:
  • Often-used libraries (for example the standard system libraries) need to be stored in only one location, not duplicated in every single binary.
  • If a bug in a library function is corrected by replacing the library, all programs using it dynamically will benefit from the correction after restarting them. Programs that included this function by static linking would have to be re-linked first.
There are also disadvantages:
  • Known on the Windows platform as "DLL Hell", an incompatible updated library will break executables that depended on the behavior of the previous version of the library.
  • A program, together with the libraries it uses, might be certified (e.g. as to correctness, documentation requirements, or performance) as a package, but not if components can be replaced. (This also argues against automatic OS updates in critical systems; in both cases, the OS and libraries form part of a qualified environment.)

 

Comments

Popular posts from this blog

NASM: program to find largest number from an array of 32-bit numbers(hard-coded)

Rules for drawing a FLOWCHART